
In contrast, the autocorrelation of the

intrinsic noise (16) decays rapidly: t
intrinsic

G
10 min ¡ t

corr
(Fig. 4E). Thus, the observed

slow fluctuations do not result from intrinsic

noise; they represent noise extrinsic to CFP

expression (see supporting online text). The

concentration of a stable cellular factor would

be expected to fluctuate with a time scale of

the cell cycle period (7, 10). For instance,

even though intrinsic fluctuations in produc-

tion rates are fast, the difference between the

total amounts of YFP and CFP in the

symmetric branch experiments has an auto-

correlation time of t
total

0 45 T 5 min (16). A

similar time scale may well apply to other

stable cellular components such as ribosomes,

metabolic apparatus, and sigma factors. As

such components affect their own expression

as well as that of our test genes, extrinsic

noise may be self-perpetuating.

These data indicate that the single-cell

GRF cannot be represented by a single-valued

function. Slow extrinsic fluctuations give the

cell and the genetic circuits it comprises a

memory, or individuality (29), lasting roughly

one cell cycle. These fluctuations are sub-

stantial in amplitude and slow in time scale.

They present difficulty for modeling genetic

circuits and, potentially, for the cell itself: In

order to accurately process an intracellular

signal, a cell would have to average its

response for well over a cell cycle—a long

time in many biological situations. This

problem is not due to intrinsic noise in the

output, noise that fluctuates rapidly, but rather

to the aggregate effect of fluctuations in other

cellular components. There is thus a funda-

mental tradeoff between accuracy and speed

in purely transcriptional responses. Accurate

cellular responses on faster time scales are

likely to require feedback from their output

(1, 4, 6, 10, 30). These data provide an

integrated, quantitative characterization of a

genetic element at the single-cell level: its

biochemical parameters, together with the

amplitude and time scale of its fluctuations.

Such systems-level specifications are neces-

sary both for modeling natural genetic circuits

and for building synthetic ones. The methods

introduced here can be generalized to more

complex genetic networks, as well as to

eukaryotic organisms (18).
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Noise Propagation in
Gene Networks

Juan M. Pedraza and Alexander van Oudenaarden*

Accurately predicting noise propagation in gene networks is crucial for
understanding signal fidelity in natural networks and designing noise-tolerant
gene circuits. To quantify how noise propagates through gene networks, we
measured expression correlations between genes in single cells. We found that
noise in a gene was determined by its intrinsic fluctuations, transmitted noise
from upstream genes, and global noise affecting all genes. A model was
developed that explains the complex behavior exhibited by the correlations and
reveals the dominant noise sources. The model successfully predicts the
correlations as the network is systematically perturbed. This approach provides
a step toward understanding and manipulating noise propagation in more
complex gene networks.

The genetic program of a living cell is de-

termined by a complex web of gene networks.

The proper execution of this program relies on

faithful signal propagation from one gene to

the next. This process may be hindered by

stochastic fluctuations arising from gene ex-

pression, because some of the components in

these circuits are present at low numbers, which

makes fluctuations in concentrations un-

avoidable (1). Additionally, reaction rates can

fluctuate because of stochastic variation in the

global pool of housekeeping genes or because

of fluctuations in environmental conditions that

affect all genes. For example, fluctuations in

the number of available polymerases or in any

factor that alters the cell growth rate will

change the reaction rates for all genes. Recent

experimental studies (2–5) have made sub-

stantial progress identifying the factors that

determine the fluctuations in the expression of

a single gene. However, how expression fluc-

tuations propagate from one gene to the next

is largely unknown. To address this issue, we

designed a gene network (Fig. 1A) in which

the interactions between adjacent genes could

be externally controlled and quantified at the

single-cell level.

This synthetic network (6) consisted of

four genes, of which three were monitored in

single Escherichia coli cells by cyan, yellow,

and red fluorescent proteins (CFP, YFP, and

RFP). The first gene, lacI, is constitutively

transcribed and codes for the lactose repres-

sor, which down-regulates the transcription of

the second gene, tetR, that is bicistronically

transcribed with cfp. The gene product of

tetR, the tetracycline repressor, in turn down-

regulates the transcription of the third gene,

reported by YFP. The fourth gene, rfp, is under
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the control of the lambda repressor promoter

P
L
, which is a strong constitutive promoter.

Because this gene is not part of the cascade,

this reporter was used to evaluate the effect

of global fluctuations. This cascade was used

to measure how fluctuations in an upstream

gene (tetR, reported by CFP) transmit down-

stream (and are reported by YFP). The inducers

isopropyl-b-D-thiogalactopyranoside (IPTG)

and anhydrotetracycline (ATC) bind to and

inhibit the repression of the lactose and tetra-

cycline repressors, respectively, and were

used to tune, respectively, the expression of

the upstream gene and the coupling between

the two genes.

We assayed the response of single cells to

various amounts of inducers by using auto-

mated fluorescence microscopy. In each exper-

imental run, the level of the three fluorescent

reporters was quantified for È2000 individual

cells. Figure 1B shows that the average signal

of the upstream gene displayed a sigmoidal

response to changes in the concentration of

IPTG in the growth media. In response, the av-

erage signal of the downstream gene (Fig. 1C)

behaved inversely and decreased sharply at

larger IPTG concentrations. The enhanced sen-

sitivity of the YFP response, compared to the

CFP response, when IPTG is varied demon-

strates the utility of cascades for generating

steep switches (7–10). However, the average

expression alone does not capture the pop-

ulation behavior, because the expression of

most cells is quite different from the average

(Fig. 1D). Even for a fixed IPTG concentra-

tion, the fluctuations in gene expression re-

sulted in a broad distribution that reflects the

interaction between the upstream and down-

stream genes.

To quantify the expression fluctuations

and the degree of correlation between differ-

ent genes, we computed the correlation

Fig. 1. (A) A schematic design of the network. (B and C) Average CFP and
YFP expression as a function of IPTG concentration in the steady state.
Each experimental data point was obtained from È2000 single-cell mea-
surements. The solid lines are fits obtained from the Langevin model

(23). (D) Scatter plot of the fluorescence levels for the entire popu-
lation at [IPTG] 0 13 mM. This corresponds to the points marked by the
arrows in (B) and (C). The red lines indicate the average CFP and YFP
expression.

Fig. 2. (A to C) Coefficient of variation h i 0
ffiffiffiffiffi
Cii

p
of the expression in genes 1 to 3 as a function of

IPTG concentration in the steady state. (D to F) Correlation between the expression levels of genes 1
and 2, 1 and 3, and 2 and 3, respectively. The solid lines are predictions from the Langevin model (23).
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Cij 0
bFiFjÀjbFiÀbFjÀ

bFiÀbFjÀ
from the fluorescence levels

F
i
in individual cells. The brackets bIÀ denote

averaging over all cells in the population, and

the indices i and j refer to the gene number as

defined in Fig. 1A. Because each cell is

characterized by three different expression val-

ues (F
1
, F

2
, and F

3
), the statistical properties

of this network are summarized by the three

self-correlations, C
11

, C
22

, and C
33

, and the

three cross-correlations, C
12

, C
13

, and C
23

. The

self-correlation is identical to the square of

the coefficient of variation, h
i
, which is

defined as the standard deviation of the

expression distribution normalized to the

mean expression. These six correlations were

plotted as a function of the IPTG concentra-

tion (Fig. 2). The correlations behave in a

nonintuitive manner. For example, the noise

properties of the upstream gene, reflected in

h
1

(Fig. 2A), are very different from those of

the downstream gene, reflected in h
2

(Fig.

2B), even though both genes are repressed

by a single upstream repressor (Fig. 1A). The

correlations C
13

and C
23

are also dependent

on IPTG concentration (Fig. 2, E and F).

Because RFP is not part of the cascade, one

might expect a correlation that is indepen-

dent of IPTG.

To clarify these issues, we developed a

stochastic model that allows for a systematic

interpretation of the data in terms of the

different components of the noise. The

coefficients of variations and correlations

can be derived from the model analytically,

enabling a direct fit to the entire experimen-

tal data set (11). Our model is based on the

Langevin approach (7, 12, 13), in which the

deterministic differential equations describ-

ing the dynamics of the system are modified

by adding stochastic terms (6, 14) that reflect

the two sources of noise: intrinsic fluctua-

tions due to low numbers of molecules and

global fluctuations in cellular components

that change the reaction rates for all genes.

Using the resulting expressions (15) for

the correlations, we can decompose the noise

in each gene into three components: intrinsic

noise in that specific gene, transmitted

intrinsic noise from the upstream genes, and

global noise modulated by the network (Fig.

3A). The intrinsic noise (Fig. 3A, green

arrows) arises mostly from low copy num-

bers of mRNAs (2, 3, 16). The second noise

component, the transmitted intrinsic noise

(Fig. 3A, blue arrows), includes the trans-

mitted fluctuations of each of the upstream

genes in the network and depends on three

factors: the intrinsic noise for that upstream

gene; the effect of temporal averaging (6, 16),

which depends on the lifetimes of the pro-

teins; and the susceptibility of the downstream

gene to the upstream one. We characterize

this susceptibility through the logarithmic gain

H
ji

(16, 17) (Fig. 3B). The logarithmic gain

reflects how the average expression of the

downstream gene j changes as the expression

of the upstream gene i is varied. For example,

the main term in the transmitted intrinsic noise

from gene 1 to gene 2 (Fig. 1A) is proportional

to the squared logarithmic gain H
21
2 (Fig. 3B,

inset). The pronounced peak in H
21
2 occurs at

an IPTG concentration for which the response

of the downstream gene is most sensitive to

changes in the upstream signal. Consistently,

the downstream fluctuations reach a maximum

at this concentration (Fig. 2B) (6). The last

component of the noise reflects the effect of

the global fluctuations. It includes the direct

effect on the gene, the transmitted effect from

the upstream genes (Fig. 3A), and the effect of

the correlated transmission, which depends on

the interactions. The latter illustrates the main

difference between transmitted intrinsic and

transmitted global noise. The different intrinsic

noise sources are uncorrelated, whereas the

global fluctuations arise from the same sources

(Fig. 3A). This means that the transmitted

global noise (Fig. 3A, purple arrows) does not

simply add to the direct global noise (Fig. 3A,

red arrows). Because both fluctuations came

from the same sources, correction terms arise

that depend on the strength (and sign) of the

interaction (15).

In Fig. 3C, these different noise compo-

nents are shown for gene 2. The intrinsic

component (Fig. 3C, green line) varies as the

inverse of the square root of the mean,

resulting in increased noise at higher IPTG

concentrations. The transmitted intrinsic

component (Fig. 3C, blue line) corresponds

roughly to the square of the logarithmic gain

(Fig. 3B, inset) times the noise in the

upstream gene (Fig. 2A) (18). The global

noise component (Fig. 3C, red line) is not

constant but rather shows the modulation as

explained above. Thus, the main features of

the noise in this gene are determined by the

network interactions, rather than by its own

intrinsic noise characteristics.

The effect of modulating the global noise is

also demonstrated by the behavior of the cor-

relations between noninteracting genes (Fig. 2,

E and F). A global fluctuation that raises the

expression of RFP will also raise the expres-

sion of YFP and CFP. An increased CFP

expression will result in a decreased YFP ex-

pression by an amount that depends on the

interaction between gene 1 and gene 2 and

hence will vary with IPTG (19). This can be

seen in the expression for the correlations (15).

A consequence of this modulation is that the

correlations C
12

and C
23

display qualitatively

similar behavior as IPTG is varied (Fig. 2, D

and F). This indicates that C
23

is dominated by

the global noise that is transmitted from gene 1

to gene 2. Similarly, the correlation C
13

is dom-

inated by the global noise transmitted from

gene 0 to gene 1 and therefore displays a dif-

ferent behavior compared to C
12

and C
23

(6).

We directly quantified the intrinsic and

extrinsic noise for genes 1 to 3 as a function

Fig. 3. (A) A sketch of the propagation of the fluctuations, showing how the two sources of noise,
intrinsic and global, can result in many components. (B) The logarithmic gain H21 is obtained as
the negative of the slope in log-log space of the mean expression of YFP as a function of mean CFP
expression. (Inset) The square of H21 as a function of IPTG. (C) Noise in the downstream gene (Fig.
2B) decomposed into the different sources of noise. The total noise (black) is the result of the
intrinsic noise in this gene (green), the transmitted noise from the intrinsic fluctuations in
upstream genes (blue), and the global noise (red).
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of the IPTG concentration (Fig. 4, A and B)

by measuring the correlation between CFP

and YFP in constructs in which both

reporters were driven by the same promoter

(3, 5, 6). The total noise was generally

dominated by extrinsic fluctuations. The

experimentally obtained intrinsic and extrin-

sic noise of genes 1 and 2 was consistent

with the predictions of the model.

To probe the predictive power of the sto-

chastic model, we used it to predict the noise

and correlations as the coupling between genes

1 and 2 was altered by adding ATC to the

growth media (6). We compared these pre-

dictions to experimental results. As an ex-

ample, h
2

and C
12

are shown in Fig. 4, C

and D. Both h
2

and C
12

display rich behav-

ior as a function of both the IPTG and ATC

concentrations. As is seen in Fig. 4C, a

small perturbation to the network can trans-

form a maximum in the h
2
-IPTG curve

(Fig. 4C, black) into a step (red) or even a

minimum (green). These features were

faithfully predicted by the model (Fig. 4D).

Similarly, the model correctly predicts cor-

relation C
12

(Fig. 4, E and F) and the other

correlations (6). These experiments demon-

strate that the stochastic model is not only

descriptive but also has predictive power

and can therefore be used as a design tool

for synthetic circuits.

Our results show that the noise in a gene

affects expression fluctuations of its down-

stream genes. This transmitted noise can be

calculated from the interactions between

upstream and downstream genes as quantified

by the logarithmic gains. Thus, it is not

necessary to have low numbers of molecules

to have large fluctuations, because noise could

be transmitted from upstream genes. We show

that the noise has a correlated global component

that is modulated by the network. Thus, even in

a network where all components have low

intrinsic noise, fluctuations can be substantial

and the distributions of expression levels

depend on the interactions between genes.

Measuring the correlation between a constitu-

tive gene and a gene embedded in a network

provides a sensitive probe for correlated sources

of noise. This would have been difficult to

reveal by monitoring single genes (2, 4) or two

copies of the same gene (3, 5). Our results

highlight the importance of including stochastic

effects in the study of regulatory networks. This

will be necessary for understanding faithful

signal propagation in natural networks (20) as

well as for designing noise-tolerant synthetic

circuits (21).
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RNA-Dependent Cysteine
Biosynthesis in Archaea

Anselm Sauerwald,1 Wenhong Zhu,3 Tiffany A. Major,4

Hervé Roy,5 Sotiria Palioura,1 Dieter Jahn,6 William B. Whitman,4

John R. Yates 3rd,3 Michael Ibba,5 Dieter Söll1,2*

Several methanogenic archaea lack cysteinyl–transfer RNA (tRNA) synthetase
(CysRS), the essential enzyme that provides Cys-tRNACys for translation in
most organisms. Partial purification of the corresponding activity from
Methanocaldococcus jannaschii indicated that tRNACys becomes acylated
with O-phosphoserine (Sep) but not with cysteine. Further analyses identified
a class II–type O-phosphoseryl-tRNA synthetase (SepRS) and Sep-tRNA:Cys-
tRNA synthase (SepCysS). SepRS specifically forms Sep-tRNACys, which is
then converted to Cys-tRNACys by SepCysS. Comparative genomic analyses
suggest that this pathway, encoded in all organisms lacking CysRS, can also
act as the sole route for cysteine biosynthesis. This was proven for Metha-
nococcus maripaludis, where deletion of the SepRS-encoding gene resulted in
cysteine auxotrophy. As the conversions of Sep-tRNA to Cys-tRNA or to
selenocysteinyl-tRNA are chemically analogous, the catalytic activity of
SepCysS provides a means by which both cysteine and selenocysteine may
have originally been added to the genetic code.

The translation of cysteine codons in mRNA

during protein synthesis requires cysteinyl-

tRNA (Cys-tRNACys). Cys-tRNACys is nor-

mally synthesized from the amino acid cysteine

and the corresponding tRNA isoacceptors

(tRNACys) in an adenosine triphosphate (ATP)–

dependent reaction catalyzed by cysteinyl-

tRNA synthetase (CysRS). Genes encoding

CysRS, cysS, have been detected in hundreds

of organisms encompassing all three living

domains (1). The only exceptions are certain

methanogenic archaea, the completed genome

sequences of which encode no open reading

frames (ORFs) with obvious homology to known

cysS sequences (1). Because of the discovery

that the genomes of a number of methanogenic

archaea either lack cysS (Methanocaldococcus

jannaschii, Methanothermobacter thermautotro-

phicus, and Methanopyrus kandleri) or can

dispense with it (Methanococcus maripaludis),

the formation of Cys-tRNACys in these or-

ganisms has been a much studied and increas-

ingly contentious topic (2, 3). A noncognate

aminoacyl-tRNA synthetase EaaRS (4–6)^
and a previously unassigned ORF (7) were

variously implicated in Cys-tRNACys forma-

tion. Recent studies failed to provide conclu-

sive support for either of these routes, leaving

the mechanism of Cys-tRNACys formation

still in doubt (2).

Previous investigations of archaeal Cys-

tRNACys biosynthesis have been hampered by

the significant levels of noncognate tRNA

routinely cysteinylated and detected by con-

ventional filter binding assays. This problem

was circumvented with a more stringent assay

of Cys-tRNACys formation: gel-electrophoretic

separation of uncharged tRNA from aminoacyl-

tRNA (aa-tRNA) and subsequent detection of

the tRNA moieties by sequence-specific

probing (8). Given that M. jannaschii is a

strict anaerobe, and considering that earlier

aerobic purification erroneously identified

prolyl-tRNA synthetase (4, 5), we used

anaerobic conditions for all procedures unless

otherwise indicated. When these procedures

were used to monitor acylation of total M.

maripaludis tRNA by an undialyzed M.

jannaschii cell-free extract (S-100), tRNACys

was charged with an amino acid that gave rise

to the same mobility shift (9) exhibited by

standard M. maripaludis Cys-tRNACys gener-

ated by M. maripaludis CysRS (1) (Fig. 1A,

lanes 7 and 8). Further optimization of the

reaction at this stage showed that Zn2þ and

ATP were also required for the successful

formation of charged tRNACys. When the S-

Fig. 1. Acid urea gel electrophoresis and Northern
blot analysis of total M. maripaludis tRNA charged
with M. maripaludis SerRS, dialyzed M. jannaschii
S-100, M. maripaludis CysRS, and M. jannaschii
SepRS in the presence of 20 amino acids (20 AA),
phosphoserine, or a M. jannaschii S-100 cell-free
extract filtrate (Y3). Half of each tRNA sample
was deacylated by mild alkaline hydrolysis (–OH).
The blots were probed with 32P-labeled oligonu-
cleotides complementary to M. maripaludis
tRNACys (A) and M. maripaludis tRNASec (B).
Total M. maripaludis tRNA charged with dialyzed
or undialyzed M. maripaludis DcysS S-100 cell-
free extract (20) in the presence of 20 amino
acids and Na2S, or Sep and NasS (C). The blot
was analyzed with 32P-labeled oligonucleotides
complementary to M. maripaludis tRNACys.
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